

Dalmia Cement (Bharat) Limited, Kadapa KDP

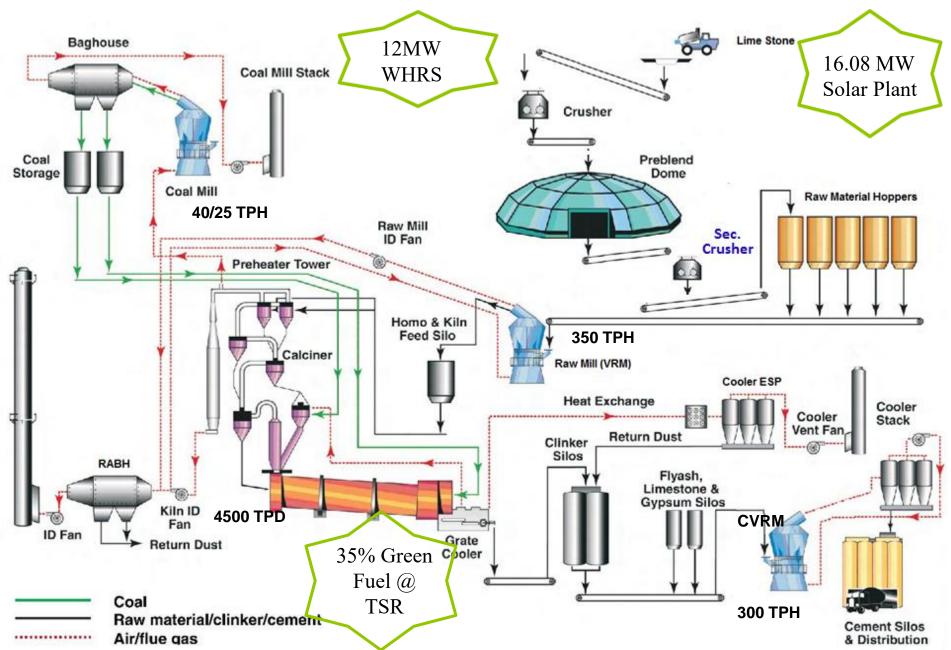
Welcome All

Date: 13.09.2023

Mentor:

Sh. Mukesh Kumar Sinha

<u>Presenting Team Members</u> Mr. Kishore Muvvala - Leader Mr. Santhosh Kumar - Energy Manager Mr. Neeraj Pundir - Team Member


- > We are 8 decades young company committed in nation building.
- > Our Group are in Cement, Sugar, Power and Refractory.
- > We established India's first Cement Plant with 250 TPD in 1939.
- > Overall Cement Manufacturing Capacity 43.7 MTPA
- Kadapa Cement Commissioned in Dec 2008 with a Capacity of
 2.5MTPA Cement.
- > The Unit usage of green fuels @ 35% TSR, 50% of Green Power
- > The Unit is Covered with 40 % of Green Belt.
- > The Unit is Water Positive by 7 Times with Storage Capacity of 26

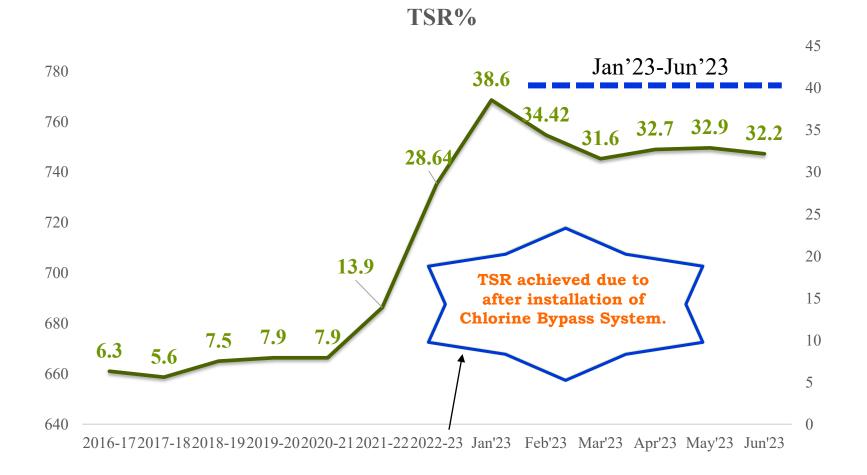
Lakh KL

Cement Manufacturing Process

KDP

Sp. Thermal Energy Consumption Trend & Global Comparison

Kcal/Kg Clinker



Thermal SEC : 686 Kcal / Kg Clinker (Benchmarking Thermal SEC)

Sp. Thermal Energy Consumption Trend & Global Comparison

Green Fuels

Material Sizeing Screen

Solid Green Fuel Feed Extractor KDP

Solid Waste Feeding Extractor Capacity: 25TPH

<u>Covered Belt Conveyor for Solid</u> <u>Green Fuel Feeding</u>

Liquid Green Fuel Handling KDP

Liquid Storage Tank Capacities : 150KL Usage Handling Capacity:100KL/Day

Liquid Green Fuel Handling-Signages

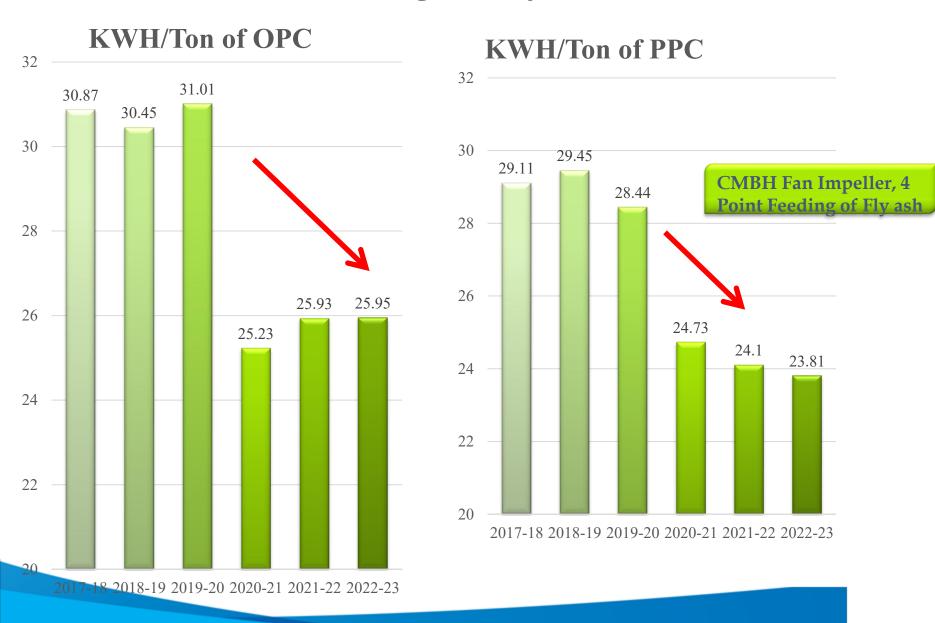
Gas Bypass System

Sp. Electrical Energy Consumption Trend (Upto Clinkerization) KWH/Ton of Clinker

P

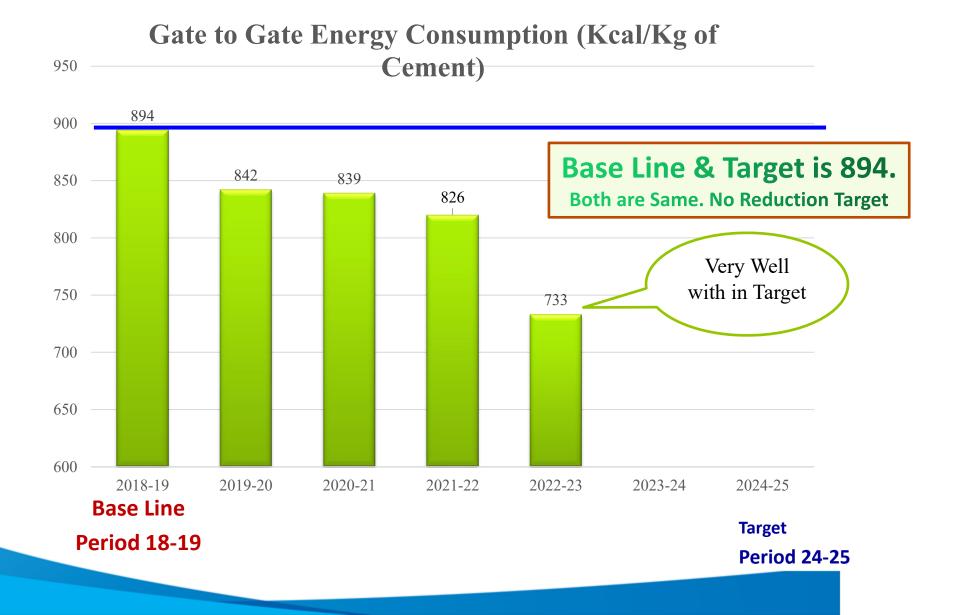
Sp. Electrical Energy Consumption Trend & Global Comparison (Overall Cement)

Units / Ton of Cement



NB – National Benchmark INB – International Benchmark

Sp. Electrical Energy Consumption Cement Grinding - Variety wise (kWh/Ton)



DCBL - KDP Plant - PAT - 7 Cycle

KDP Encon Journey

MILESTONE

FY2023-Cooler upgradation,4 MW Solar, RM fan impeller replacement, Pyro upgradation

FY 2023

FY2021-Installation

Shredder, optimization of

FY 2022

Installation of 12MW WHRS, 16.08 MW Solar Plant & 15% Gas Bypass system

FY2022-

of

FY 2020 & 21 FY 2020-CMBH Fan Impeller, 4 Point

FY 2019

FY 2018

FY 2017

FY 2019 - Secondary Crusher **Cement Mill HAG, Flyash LP Compressor**

cement mill

Feeding of Flyash, Cooler Optimisation

FY 2018 – Liquid Al. Fuel, RM Cyclone CFD & Modified, Clinker Cooler Modified

FY 2016

Commissioning

FY 2017 – Raw Mill Fan Impeller Replaced. Kiln Burner & Pipe Modified

FY 2016 – Liquid & Solid AFR RABH & CM Fan Impeller Replaced

- All Motors are Energy Efficient Series
- 2. More than 60% Motors are with VFD
- 3. All Process Fans with VFD and w/o Damper

Road Map for Achieving Benchmark / Global Best – Electrical Energy

Short term Long term

Target - 55.9 U/T of PPC_{equ}

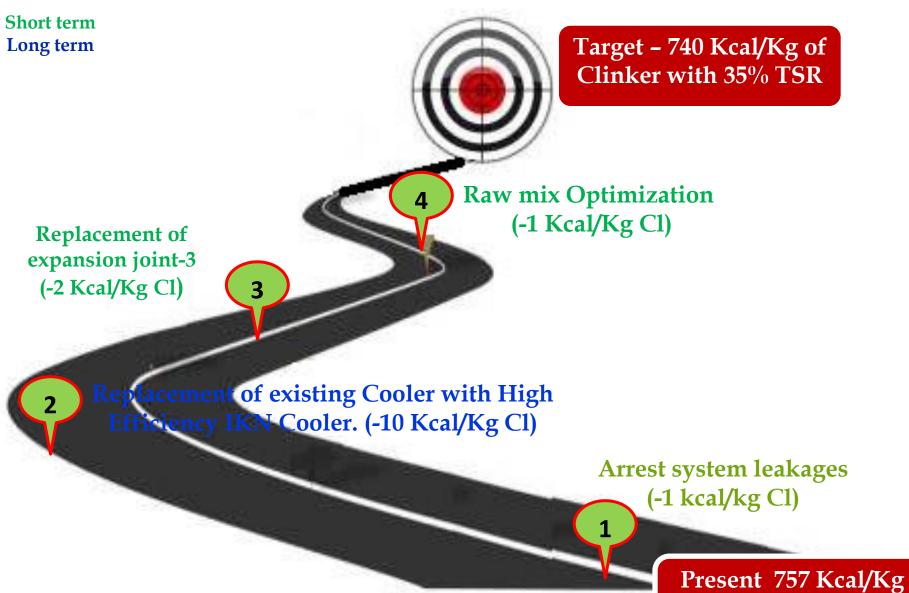
Replacement of Expansion Joints in the Pre Heater (Red. 0.6U/T

> Replacement of Raw Mill Fan with high efficiency impeller fan(Reduction of 1.0 U/T)

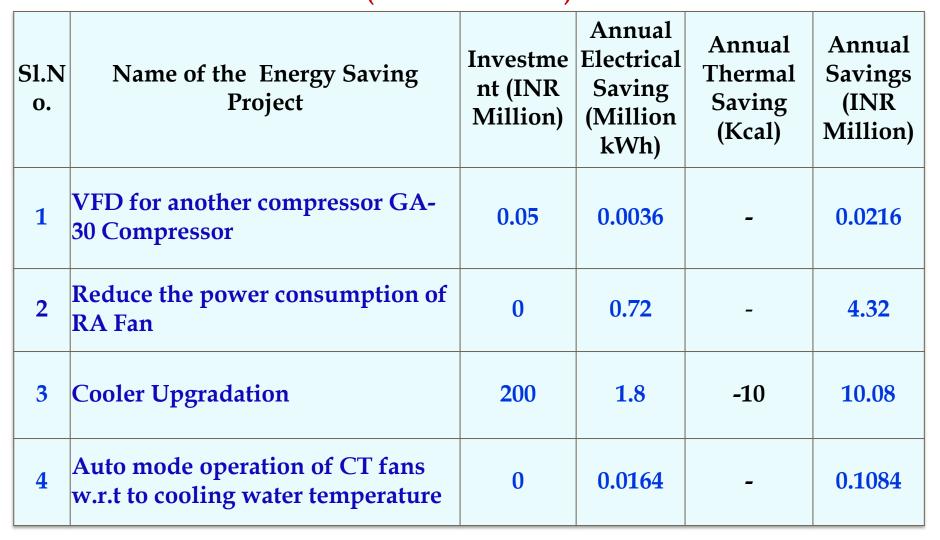
> > 1

Cooler upgradation (Reduction of 1 U/T)

> Present 59.15 U/T of PPC_{equ}


Installation of tertiary Crusher (Red. of 0.5 U/T) 2

Road Map for Achieving Benchmark / Global Best – Thermal Energy

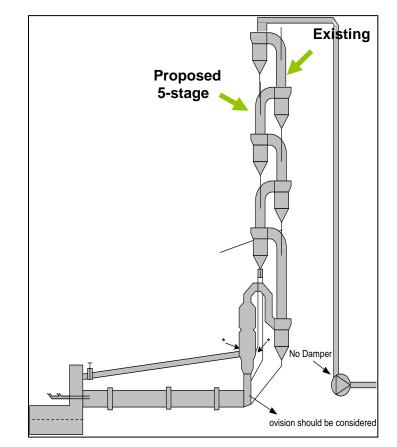


of Clinker

Major Encon Projects planned (FY 2023 to 2024)

Summary of Energy Saving Projects in the Last 3 Years.

Year	No. of Energy saving project s	Investmen ts (INR Million)	Electrical savings (Million kWh)	Thermal savings (Million INR)	Savings (INR Million)	Impact on SEC (kWh/MT of Cement)
2022-23	5	23.5	1.40	-	9.19	
2021-22 (GBS, WHRS, 2 Additional cooler fans)	13	1846	71.18	33.35	522.46	0.75
2020-21	21	177	6.41	6.5	134	3.69



Innovative Project - 1

5-Stage Feeding option for Increasing the power generation in PH Boiler

- Existing Preheater feeding system is six stage feeding option resulting to low PH exit temperature around 265 deg C
- The heat required for Raw mill and Coal mill drying requires the temperature around 200 deg C post WHRS
- The dust leaving the six stage feeding option will be higher when compared to 5 stage feeding option in six stage preheater

Existing layout with additional Diverter

Innovative Project - 1

Option	UOM	6 Stage Feeding	5 Stage feeding
Pyro Capacity	TPD	6000	6000
PH O\L Flow	Nm ³ /h	357500	366268
Sp. PH Fan O/L Flow	Kg/Kg Clk.	2.04	2.09
PH boiler inlet temp.	°C	265	315
PH boiler outlet Temp.	°C	140	165
Heat available from PH alone	Kcal./Kg Clk.	32.5	58.9
Power generation from PH alone	MW	2.1	3.8

Innovative Project - 2 Energy consumption optimization of HP BFP

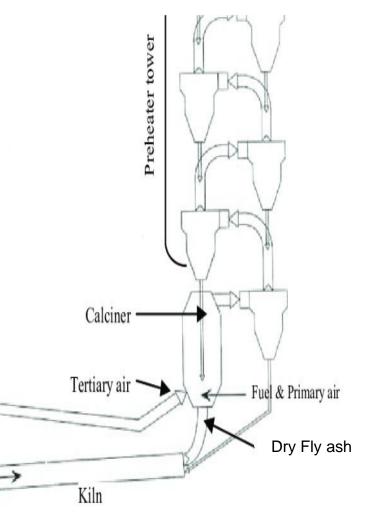
Data before process optimization of HP BFP for energy									
saving									
PARTICULARS	UOM	PARAMETERS							
TG Load	MW	9.4							
Pump VFD	%	90							
Current	AMP	101							
Pump Discharge pressure	Kg/Cm2	27							
AQC FCS CV Opening %	%	30							
PH FCS CV Opening %	%	55							
Energy Consumption by HP									
BFP	KW	62							

Data after process optimization of HP BFP for energy saving								
PARTICULARS	UOM	PARAMETERS						
TG Load	MW	9.3						
Pump VFD	%	83						
Current	AMP	82						
Pump Discharge pressure	Kg/Cm2	23						
AQC FCS CV Opening %	%	35-45						
PH FCS CV Opening %	%	95						
Energy Consumption by								
HP BFP	KW	50						

□HP BFP Ratings:- 90Kw & FLC 150 Amp

- □Following steps are done to control Auxiliary power consumption in HP BFP, are as bellow:-
- □ BFP Discharge pressure reduced from 27 kg/cm2 to 23 kg/cm2.
- □By optimizing both AQC & PH FCS CV opening %
- □This reduces both VFD% & Current of the pump on same load
- □Thus in total approximately 12 Unit/Hr energy will be saved.

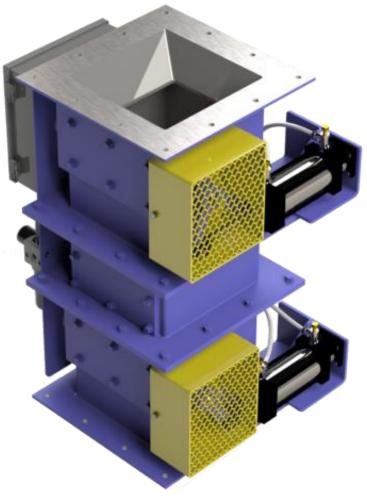
□8460 Unit will be saved in month & in a year 103680 Unit will be saved.


Innovative Project - 3 Implementation of Fly ash feeding in Kiln Inlet

Fuel

Introduction: Whenever Solid fuel tripping kiln is disturbing due to ASH & LSF Mismatch

- ➢ Solid fuel running with 25 TPH with ash around 25-28%.
- Whenever Solid is tripping LSF is increasing in raw mix and Silica is reducing. Dust circulation is increasing slowly and Kiln is coming dusty condition.
- To avoid that we introduced dry fly ash feeding directly to Kiln inlet. Dry fly ash with a quantity of 5-6 TPH due to that ash is maintaining in system and Kiln is not disturbing



Innovative Project - 4 Implementation of Double flap for Solid feeding

Introduction: To feed continuously solid fuel in PC we had installed Double flap to arrest false air and stable feeding.

- ➢ Solid fuel feeding -600 TPD
- While solid is feeding in PC, PC temperature is varying rapidly due to fluctuations in Solid feeding.
- After installation of Double flap for solid feeding, Solid fluctuations is reduced and PC temperature control.

Renewable Energy Sources (2022-23)

		Savings				
Type of Renewable Energy Source	Installed Capacity in MWp	Energy Generated (Lakhs Unit)	Cost Saving (Rs. Lakhs)			
GPP (WHRS)	12	534	3204			
GPP Solar Power	16.08	220	1317			
Bio Gas Plant	At Guest House	1800 m ³ /Yr.	1.20			

Waste Heat Recovery System & Gas Bypass System two distinct enablers which is contributing for 35% green fuel & 50% green Power

Dalmia Cement Committment

http://there100.org/dalmia-cement

(page 13)

First Cement Plant in India Committed Volunteerly

United Nations - High-level Signing Ceremony of the Paris Agreement on Climate Change

Dalmia Cement Advocates Just Transition at TERI's Roundtable for a Resilient Future

knowledge speak

Mr. Mahendra Singhi, MD & CEO, Dalmia (Cement) Bharat LTD.

Mr. Mahendra Singhi recently engaged with EPC World, where he spoke about how Dalmia Bharat is committed to reducing carbon dioxide emissions and investing in digital technologies to transform the business.

The story talks about the implementation of newer technologies and how it has enhanced the experience of various stakeholders.

Mr. Singhi also talked about the various initiatives the organization has taken to reduce CO_2 emissions and its growth plans.

Dalmia Cement Committed for Carbon Neutral by 2040

Dalmia Cement RE100 Committment & Action Plan

S1.No	Description	Description Qty (Lakh Units/ Annum)		Remarks
	Total Power Requirement / Consumption at Kadapa	1300	100	Annual Power Requirement
2	GPP Generation with 12 MW WHRS	600	46.2	Completed
3	16.08 MW Solar Plant within Premises	250	19.2	Completed
4	4 MW Solar	62	4.8	Completed
5	6 MW Wind	68	5.2	Under Survey
h	200MW Captive Solar(DCBL KDP Share 20MW)	320	24.6	Under Survey

KDP

100% Energy Independence by 2026

Road Map for RE 100%

Enhancement of Existing 2 transformers from 6.8 MVA to 9.25 MVA will provide gain of 15000 KW /day .

Off site solar extension for 3MWp.

Off site Wind power of 7MWp.

M/s. Hetero Wind Power(Tirumalayapalli,30 KM from our plant) has installed 63 Wind turbine each of 1.5 MW having total capacity of 94.5 MW.

In Process of making PPA with M/s Hetero & M/sAPTRANSCO.

We will explore the possibility to get captive agreement with M/s Hetero Wind Power for long term agreement.

Dalmia Waste Consumption as Raw Material

C1 N	N		Quantity	tity Roplaced material		Total
Sl.No	Year	Waste as Raw Material	(Tons)	Replaced material	%	%
1		Pond Ash	25418	Aluminus Laterite	0.84	
2	2020-21	Slag	28067	IronOre	0.92	2.16
3		Red mud	12107	Aluminus Laterite & Ironore	0.4	
4		Pond Ash	39394	Aluminus Laterite	1.64	
5	2021-22	Slag	2011	Aluminus Laterite & Limestone	0.08	2.06
6		Redmud 8239 Aluminus Laterite & Ironore		0.34		
7		Pond Ash	41755	Aluminus Laterite	1.49	
8		Slag	3107	Aluminus Laterite & Limestone	0.11	
9		Redmud	34565	Aluminus Laterite & Ironore	1.24	
10		Wet Scraper Dust	5780	IronOre	0.21	
11		Tannery Sludge	911	Limestone	0.03	
12	2022-23	Lime Sludge	12	Limestone	0.0004	3.374
13	-	ETP Sludge	145	Limestone	0.005	
14	-	Boiler Ash	392	Wet Flyash	0.014	
15		Granite Dust	5287	Aluminus Laterite	0.19	
16		Iron Dust Waste Powder	2389	IronOre	0.085	

GHG Inventorisation

Carbon Foot Print Activities

Year	Scope 1 emissions CO ₂ e (MT)	Scope 2 emissions CO ₂ e (MT)	Scope 3 emissions CO2e (MT)	kg CO2e/MT of Cement	Mitigation Total Reduction in emission intensity since baseline year study CO ₂ e (MT)
2012 - 13 (Baseline Year)	731	70	28	829	Baseline Year
2013 - 14	722	76	24	822	7
2014 - 15	689	80	27	796	33
2015 - 16	706	77	10	793	36
2016 - 17	694	76	11	781	48
2017 - 18	698	75	13	786	43
2018 - 19	698	75	11	784	45
2019 - 20	697	74	10	781	48
2020 - 21	693	73	10	776	53
2021 - 22	686	72	10	768	61
2022 - 23	594	45	10	649	180
Target : 649 kg CO ₂ e/MT of Cement	ooocess	Grid Power	Transport	Overall	7.3% Reduction from Base Line

Bamboo Plantation for Co2 Absorption & AFR Usage

Plantation Area : 35 Acres

Green Supply Chain Project (FY 2022-23)

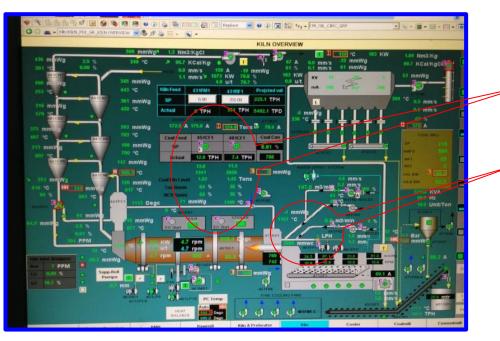
S1.No.	Name of Project Implemented	Investment	Benefits
1	PLMS- Plant Logistics	8Lakhs	Tracking of Truck Waiting time at different Location.
	Management System	oLuidio	Auto allocation of Order
			Helps in Tracking of track in the Plant & TAT
2	RFID- Radio Frequency Interface Device	7 Lakhs	Reduction of Man intervention and reduction of Error
			Helps in Reverse Logistic
3	TBPS-Transporter Bill	5 Lakhs	Bill process time reduction
3	Payment System	3 Lakiis	Tracking of invoice status.
			Goods Transition Through Godown Eliminated
4	End to End Project	2 Lakhs	Goods Direct Dispatch to customer
			Energy & Cost Savings in Logistics
5	Vahiala un Ciza		To reduce No of trips
5	Vehicle up Size	-	Energy & Cost Savings in Logistics
6	DD (Direct Disrectab)		Delivery to End customer to reduce handling in depots
0	DD (Direct Dispatch)	-	Energy & Cost Savings in Logistics
7	Conversion of diesel truck	7 Lakh per	Environment friendly & economical
	to CNG Truck	truck	
8	GPS	W por truck	End to end tracking of truck movement, better planning,
		ZK per truck	improve turn around time

Energy Monitoring System

Daily Power Consumption Report

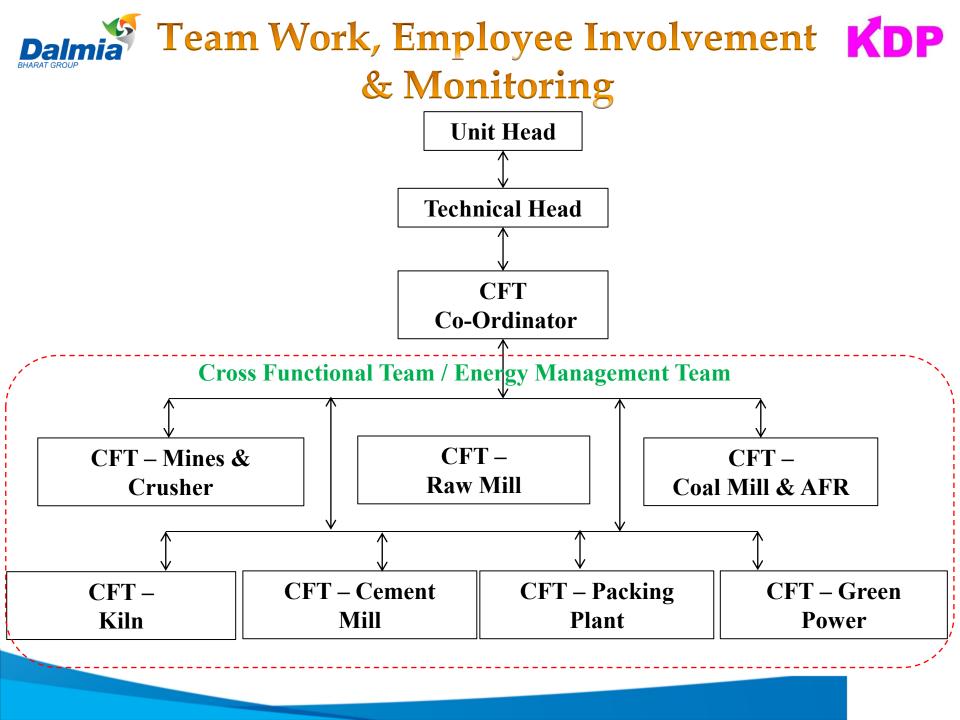
Daily Energy Conservation Report

	Dalmia Cement (Bharat) Limited. Kadapa Project <u>Daily Power Consumption Report</u>								
				-					
	132Kv Main Incoming Units	374595	Kwhr		Avg PF:	0.990	Report Dat	te:	XX.06.20X X
	DG Generation Units	0	Kwhr				Consumpt Date:		XX.06.20X X
	Peak Hour Consumption	20715	Kwhr		(MD) KVA	22500	OLTC Opr Count	ι.	9
Sl. No.	Section Description	Units Consumption	Runnin g Hrs	Prodn.	Productio n Rate	Avg Kw	Guarantee d U/T of Matl.	Ac	rtual of Matl.
1	LS Crusher		16.17	11445	707.79	628			
	LS Crusher Main Drive	3771				233	0.38	0	.33
	LS Crusher Auxiliaries	1938				20	0.46	0	.17
	211BC2 Long Belt	2386		1		14		0	.21
	211BC2A Long Belt	2060				127	0.42	0	.18
	LS Crusher & Transport- Total	10155		\square			1.25	0	.89
2	Raw Mill		16.92	7105	419.92	7106			
	Raw Mill Main Motor	63 8				3733		8	.89
	Raw Mill Fan Motor	446 <mark>?</mark> 8				2638	17.42	6	.28
	Raw Mill Classifier 🛛 🥖	152				90		0	.21
	MCC - 02 (LS Transport)	195.				116		0	.28
	MCC - 03 (RM Grinding Aux.)	9 36				410	2.07	0	.98
	Additive Reclaimer	327				19		0	.05
	LS Stacker & Reclaimer	1706				101		0	.24
	RM Fan SPRS Recovery	0				0		0	.00
	Total	120235					19.49	16	5.92
3	Coal Mill		14.33	577	40.27	877			
	Coal Mill Main Motor	5197				363			.01
	Coal Mill Fan Motor	3577				250	25.51	÷	.20
	Coal Mill Classifier	272				19		0	.47
	MCC - 07 (Coal Mill Grinding Aux.)	2169				151	16.73	3	.76
	RMH & Coal Crusher	1349				94		2	.34
	Total	12564					25.51	21	l.77


ENERGY CONSERVATION (IDLE POWER CONSUMPTION REPORT)											
		OPTI	ACTU	XX.06.2 0XX	ENERGY IN KWH						
SECTION	SECT	'ION DI	ESCRIPTION		MUM SATR T UP TIME	AL RUNN ING HOUR S	IDLE RUNIN G TIME	IDLE /SHUT DOWN UNITS		WITHO UT IDLE RUNNIN G U/Ton	Kwh
	А	PRON	FEEDER		0.00	16.17					
LS	CRUS	SHER M	IAIN DRIVE		0.17	17.67	1.33	106.40			80.00
CRUSHE		2111	BC2		0.50	17.92	0.00	0.00	0.89	0.86	145.00
R		211B			0.50	17.92	1.2	181.25			145.00
	MINES DEWATERING PUMP				66.00						
	IDLE/SHUT DOWN POWER							87 ,5			
	No of Start/ Stops	3.00									
	WEIGH FEEDER			00	16.	>					
	MAIN DRIVE			0.0	16 0	-0.05	0.00			150.00	
Raw Mill	FAN			.30	16.90	-0.32	0.00	16.92	16.88	2600.0 0	
Kaw Will	LS RECLAIMER FEED G. QUP			12.20	16.50	4.30	335.40			78.00	
	AD. REC		TED GRU		10.10	12.70	2.60	0.00			49.00
	TOTAL DCS IDLE / SHU, DOWN POWER						335.40				
	No of Start/ Stops	0.00	Dcs Idle Power	331.00							
	W	VEIGH	FEEDER		0.00	14.33					
		MAIN			0.03	14.40	0.04	2.00			50.00
		FA			0.17	14.70	0.13	32.50	19.44	19.06	250.00
Coal Mill			R FEED GRO		3.30	3.30	0.00	0.00			54.00
			ER FEED GR		3.80	5.30	1.50	180.00 1349.00			120.00
	RAW MATERIAL HANDLING TOTAL DCS IDLE / SHUT DOWN POWER						214.50				
	No of Start/ Stops	4.00	Dcs Idle Power	75.00							

Online Sp. Energy Monitoring

Online SEC Monitoring by CCR Operator and taking Immediate action during increase in SEC Indication


Cloud Based Energy Management System

Grid I/C Meter

Online SEC of Electrical & Thermal Energy Consumption as -per

- 1. Sum of Electrical Power Consumption
- 2. Coal Feed Rate
- 3. Process Material Feed Rate

Environmental Projects

Theme : Water Pond Development & Rain Water Harvesting

Kadapa Plant is Water Positive

Employees Involvement Training – Summary (FY 2022-23)

SI.No	Training Program	Internal / External	No.of participants	Duration (Hrs)
1	Heat & Mass Balance	Internal	12	4
2	Circulation Phenomena in Pyro Process	Virtual	13	2
3	MV Drives & SPRS-Slip Power Recovery System	External	13	4
4	Bag Filter (Over View ,operation & Maintenance)	Virtual	15	2
5	Basics of Fan Engineering	Virtual	12	3
6	Combustion Engineering	Virtual	13	2
7	Mill-Separation	Virtual	12	4
8	Motor Basics & Energy Saving	Internal	16	4

ISO Certifications ISO 14001:2015 ISO 45001:2018

APSECM-Gold Award

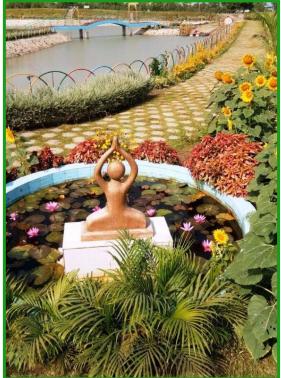
KDP **CII-SR Best Solid Waste Management Award**

Total 15 awards Received in FY 2022-23. Include **CII Excellence** Award

Participated in the CII-SR Industrial Waste Management Competition 2022 - 2nd Edition

Environmental Projects

Theme : Water Pond Development & Rain Water Harvesting


Kadapa Plant is Water Positive

Thank you

Muvvala.Kishore@dalmiacement.com k.santhoshkumar@dalmiacement.com Pundir.Neeraj@dalmiacement.com